本文目录一览:
直接转换,即可。
比如,12,
其原码、补码、反码,都相等,都是 12。
正数的补码,是其本身。
负数的补码,就用它的正数,减一取反,即可得到补码。
原码、反码,根本就没有用。
所以,在计算机中,也没有原码和反码。
那么,我们也不必关心这些。
原码
正数的符号位为0,负数的符号位为1,其它位按照一般的 *** 来表示数的绝对值.用这样的表示 *** 得到的就是数的原码.
反码
对于一个带符号的数来说,正数的反码与其原码相同,负数的反码为其原码除符号位以外的各位按位取反.
补码
正数的补码与其原码相同,负数的补码为其反码在更低位加1
转换 *** :
如果是正数或零,则首位为 0,补码=原码=反码。
否则,首位为 1,数值位取反加一,即可实现“补码与原码”互换。
例如:
对 1111 1001 取反,为 1000 0110,再加一,得:1000 0111。
对 1000 0111 取反,为 1111 1000,再加一,得:1111 1001。
这说明,补码 ←→ 原码, *** 是相同的。
无论什么类型的数字,在计算机中,都是以“二进制代码”存储的。
实用的,只是补码。
而原码和反码,在计算机中,并不存在。
因为,原码反码的定义,都是不合理的,不适于计算。
下面按照八位二进制来说明补码的定义,其它位数,自行脑补。
十进制数 0,存放的,就是二进制 0000 0000。
十进制数 +1,就加上 1,二进制是 0000 0001。
十进制数 +2,就再加 1,二进制是 0000 0010。
。。。
十进制数 +127,加 1加 1...,就加到了 0111 1111。
+127,这就是更大数值。
----------
负数怎么办? 你就从 0,依次递减吧。
十进制数 0,以二进制 0000 0000 存放。
十进制数 -1,就减去 1,得 1111 1111 = 255(十进制)。
十进制数 -2,就再减 1,得 1111 1110 = 254。
十进制数 -3,就再减 1,得 1111 1101 = 253。
。。。
十进制数 -128,减 1减 1...,得 1000 0000 = 128。
不要再减了,这就是最小值了。
(你再继续减,就是 0111 1111,这就是+127 了。)
因此,最小数值就是-128。
----------
总结:
零和正数:直接用二进制存放。
负数:存放形式是【256+这个负数】。
这套存放格式,就是所谓的【补码】。
求【补码】,就是这么简单。
完全不用绕到“原码反码符号位”那么远。
可以用十进制来计算。如果需要二进制,你就再转换一下。
用这个 *** ,不涉及原码反码符号位,就少了不少麻烦事。
----------
为什么负数用补码存储?
利用补码,可以把减法运算,转换成加法。
(所以,在计算机中,有一个加法器,就够用了。)
例如,6-2 = 4,在计算机中用补码代替数字,运算如下:
6 的补码是 0000 0110
+ -2 的补码是 1111 1110
-----------------
(1) 0000 0100 (= 4 的补码)
(括号中的 1,是进位,舍弃不要了。)
注意:
如果运算结果超出了-128~+127 的范围,结果将是错的。
这种现象称为“溢出”。
再注意一下:进位,并不等于溢出。
---------
因为补码的这个特性,所以,在计算机中,只是使用补码存放数据。
而原码反码,在计算机中,都是不存在的。
原码反码 的用途,仅仅是用于“心算、笔算”。
其实,笔算的 *** ,并非只有“取反加一”。
另外,-128,有补码,但是却没有原码反码!
用“取反加一”来求-128 的补码,无异于缘木求鱼。
所以,大家,完全不必在原码反码 上浪费时间精力。
但是,考试怎么办?
呃 ...,还是别跟老师较劲,他怎么乱讲,你就怎么答吧。