计算机毕业设计
基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码
基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据
基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件
基于C++的即时通信软件设计 毕业论文+项目源码
基于JavaWeb+MySQL的图书管理系统 课程报告+项目源码及数据库文件
基于Android Studio+Android SDK的手机通讯录管理软件设计 课程报告+项目源码
基于 *** P+MySQL的校园网上订餐系统 毕业论文+项目源码及数据库文件
基于AndroidStudio的花艺分享平台APP设计 报告+源码及APK文件
基于Python的酒店评论情感分析 课程报告+答辩PPT+项目源码
基于QT的教务选课管理系统设计与实现 毕业论文+项目源码
基于Android+Springboot+Mybatis+Mysql的个人生活APP设计 说明书+项目源码
基于Vue.js+Go的Web3D宇宙空间数据可视化系统 设计报告+前后端源码及数据
基于java+android+SQLite的保健型果饮在线销售APP设计 毕业论文+源码数据库及APK文件
基于Vue.js+SpringBoot+MyBatis+MySQL的高校综合资源发布分享社交二手平台 毕业论文+项目源码及数据库文件+演示视频
基于Delphi+MySQL的大学生竞赛发布及组队系统 设计报告+源码数据库及可执行文件+使用说明书
基于Android的名片信息管理系统设计与实现 毕业论文+任务书+外文翻译及原文+演示视频+项目源码
基于Python的电影数据可视化分析系统 设计报告+答辩PPT+项目源码
基于JavaWeb的企业公司管理系统设计与实现 毕业论文+答辩PPT+演示视频+项目源码
高校成绩管理数据库系统的设计与实现 毕业论文+项目源码
基于JavaWeb的家庭食谱管理系统设计与实现 毕业论文+项目源码及数据库文件
基于Python+SQLSERVER的快递业务管理系统的设计与实现 毕业论文+项目源码及数据库文件
基于Python的语音词频提取云平台 设计报告+设计源码
在推荐系统中引入 Serendipity 的算法研究 毕业论文+参考文献+项目源码
基于Html+Python+Django+Sqlite的机票预订系统 毕业论文+项目源码及数据库文件
基于Python的卷积神经 *** 的猫狗图像识别系统 课程报告+项目源码
基于C++的云安全主动防御系统客户端服务端设计 毕业论文+项目源码
基于JavaS *** 的学生成绩管理APP系统设计与实现 毕业论文+答辩PPT+前后台源码及APK文件
基于JavaSwing+MySQL的清朝古代名人数据管理系统设计 毕业论文+任务书+项目源码及数据库文件
基于Python_Django的社会实践活动管理系统设计与实现 毕业论文
基于Servlet WebSocket MySQL实现的 *** 在线考试系统 毕业论文+项目源码
基于JavaWEB+MySQL的学生成绩综合管理系统 毕业论文+项目源码及数据库文件
基于SpringBoot+Vue和MySQL+Redis的 *** 课程平台设计与实现 毕业论文+任务书+开题报告+中期报告+初稿+前后台项目源码
基于Java的毕业设计题目收集系统 课程报告+项目源码
基于Java+Python+html的生产者与消费者算法模拟 毕业论文+任务书+项目源码
基于JavaWeb+MySQL的学院党费缴费系统 毕业论文+项目源码及数据库文件
基于Java+MySQL的学生成绩管理系统 毕业论文+任务书+答辩PPT+项目源码及数据库文件
基于Java+MySQL的学生和客户信息管理系统 课程报告+项目源码及数据库文件
基于Java的长整数加减法算法设计 毕业论文+项目源码
基于vue+MySQL的毕业设计网上选题系统 毕业论文+项目源码
基于背景建模和FasterR-CNN的视频前景和目标检测 毕业论文+答辩PPT+项目源码
基于Python的智能视频分析之人数统计的多种实现 毕业论文+答辩PPT+项目源码
基于C#+SQL server的校园卡消费信息管理系统 毕业论文+项目源码及数据库文件
你好,分为了以下四种:
1. KCF:TrackerKCF 使用目标周围区域的循环矩阵采集正负样本,利用脊回归训练目标检测器,并成功的利用循环矩阵在傅里叶空间可对角化的性质将矩阵的运算转化为向量的Hadamad积,即元素的点乘,大大降低了运算量,提高了运算速度,使算法满足实时性要求.
2.MIL:TrackerMIL 以在线方式训练分类器将对象与背景分离;多实例学习避免鲁棒跟踪的漂移问题
3. OLB:TrackerBoosting 基于AdaBoost算法的在线实时对象跟踪.分类器在更新步骤中使用周围背景作为反例以避免漂移问题.
4.MedianFlow:TrackerMedianFlow 跟踪器适用于非常平滑和可预测的运动,物体在整个序列中可见.
5.TLD:TrackerTLD 将长期跟踪任务分解为跟踪,学习和检测.跟踪器在帧之间跟踪对象.探测器本地化所观察到的所有外观,并在必要时纠正跟踪器.学习估计检测器的错误并进行更新以避免再出现这些错误.追踪器能够处理快速运动,部分遮挡,物体缺失等情况.
之前写过一些tracking的东西,把最近看的比较流量的算法写一下:个人觉得值得仔细研究的tracking算法包括: Mean-shift, Particle Filter, Ensemble Tracking TLD, 压缩感知跟踪,KCF Tracker及其改进 速度慢于50fps的跟踪算法就没有必要搞了,...
最近刚开始学习単目标跟踪,最近想搞明白KCF的思想,看了一个星期的公式推导,要看哭了!!!!把自己现在已经知道的一些结论写下来理理思路。欢迎指正。
先说一下它的优点吧:
1.通过图片的矩阵循环,增加了训练样本,提高了正确率。
2.进行傅里叶变换,避免矩阵求逆操作,计算更快速。
3.使用高斯label,更合理。
现在来梳理一下它整个计算的流程:
1.目标函数:
我们的目标是最小化我们的采样数据xi的计算标签f(xi)与下一帧真实目标位置的真实标签yi(回归目标)的距离。(这个应该不难理解吧,我计算出来的标签越像真实标签,说明我找到的下一帧得得位置离它真实位置越近)
这个表示的形式为脊回归,下面的部分求解过程,可以参考SVM的求解过程。虽然不是一摸一样的形式,但是帮助理解本篇文章中的求解方式是非常有用的(“ 支持向量机通俗导论(理解SVM的三层境界)LaTex最新版_2015.1.9.pdf ”这篇文章中关于表达式的意思和求解写的很清楚)
在线性问题中:
在求解这里的最小值的时候,将f(xi)根据公式(1)换成矩阵形式Wt*X(为什么可以转换成这种形式参考SVM),X的每一行表示一个采样结果的xi,X是经过之一行的xi不断循环得到的一个矩阵,Wt表示W的转置。y表示yi组成的向量。然后计算公式(2)对W的求导等于0可以得到:
(4)式即将(3)式中的转置转换成了共轭,只要是考虑在下面的傅里叶转换中有负数的出现。
这里我们看到在求w得最小值的时候有矩阵求逆的操作,这使得计算量比较大。然而根据之前说的X是一个循环矩阵,形式为:
将矩阵进行傅立叶变换后,循环矩阵有一个性质:
即一个循环矩阵可以用它的之一行的向量进行傅里叶变换之后表示,x带一个帽子表示对向量x进行了傅里叶变换。傅里叶变换的具体理解可以参考: 此篇傅里叶博客
对于如何进行傅里叶转换可以参考: 傅里叶转换 ***
然后就可以发现一个循环矩阵可以转换成用一个向量来表示。将(6)式带入(4)式化简:
w戴帽子的意思就是进行了傅里叶转换,这样就从一个矩阵的运算换到了向量的运算。减少了求逆的操作。
当然在大多数情况下我们解决的是非线性问题 :
那我们就引进了高维求解和 核函数的概念(仔细的求解参考上文提到的SVM文章)。
在高维空间中非线性问题w可以变成一个线性问题。
fai(xi)表示将x映射到高位空间的函数。
那我们的目标函数就可以表示成
其中k表示核函数它的定义运算如下:
由(8)可见之前求最小w的问题转换成了求最小阿尔法的问题。将(8)带入(2)阿尔法的求解参考一篇文章“ R. Rifkin, G. Yeo, and T. Poggio, “Regularized least-squares classification,Nato Science Series Sub Series III Computer and Systems Sciences, vol. 190, pp. 131–154, 2003.”
最后可以解得
进行傅里叶变换:
这里Kxx代表K矩阵的之一行元素的傅里叶变换。K也是一个循环矩阵可证,此处省略具体方式可参考 “High-Speed Tracking with Kernelized Correlation Filters João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista”的5.2节。
这样(8)式可以表示成:
Kz是所有训练样本和候补patch之间的核矩阵
现在就剩讨论一下k的形式,如果k是线性核的话就可以转换成我们在讨论线性问题时求得的w的傅里叶转换之后的形式。本篇文章中用的是高斯核,形式如下:
这就是里面用到的主要的公式的推倒吧。
推倒下一帧的地方时就是计算采样的特征和之前的训练完的数据做高斯匹配再与阿尔法相乘,得到的一个响应值更大的就是下一帧的可能值更大的地方。